Flight Standardization Board (FSB) Report

Revision: Original
Date: 08/26/2015

Airbus
A350

David L. Robinson
Chair, A350 Flight Standardization Board

Federal Aviation Administration
Seattle Aircraft Evaluation Group
1601 Lind Avenue SW
Renton, WA 98057-3356

Telephone: (425) 917-6600
FAX: (425) 917-6638

RECORD OF REVISIONS
<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Sections</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Original)</td>
<td></td>
<td>08/26/2015</td>
</tr>
</tbody>
</table>
HIGHLIGHTS OF CHANGES:

Original Issue.
CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD OF REVISIONS</td>
<td>2</td>
</tr>
<tr>
<td>HIGHLIGHTS OF CHANGES</td>
<td>3</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>4</td>
</tr>
<tr>
<td>1. PURPOSE AND APPLICABILITY</td>
<td>6</td>
</tr>
<tr>
<td>2. PILOT TYPE RATING REQUIREMENTS</td>
<td>8</td>
</tr>
<tr>
<td>3. MASTER DIFFERENCE REQUIREMENTS (MDR)</td>
<td>8</td>
</tr>
<tr>
<td>4. OPERATOR DIFFERENCE REQUIREMENTS (ODR) TABLES</td>
<td>9</td>
</tr>
<tr>
<td>5. FSB SPECIFICATIONS FOR TRAINING</td>
<td>10</td>
</tr>
<tr>
<td>6. FSB SPECIFICATIONS FOR CHECKING</td>
<td>19</td>
</tr>
<tr>
<td>7. FSB SPECIFICATIONS FOR CURRENCY AND RECENCY OF EXPERIENCE</td>
<td>21</td>
</tr>
<tr>
<td>8. AIRCRAFT REGULATORY COMPLIANCE CHECKLIST</td>
<td>23</td>
</tr>
<tr>
<td>9. FSB SPECIFICATIONS FOR DEVICES AND SIMULATORS</td>
<td>24</td>
</tr>
<tr>
<td>10. APPLICATION OF FSB REPORT</td>
<td>25</td>
</tr>
<tr>
<td>11. ALTERNATE MEANS OF COMPLIANCE</td>
<td>25</td>
</tr>
<tr>
<td>12. MISCELLANEOUS</td>
<td>26</td>
</tr>
</tbody>
</table>
CONTENTS (Cont’d)

APPENDIX			PAGE

APPENDIX 1. MASTER DIFFERENCE REQUIREMENTS (MDR) TABLE 27

APPENDIX 2. OPERATOR DIFFERENCE REQUIREMENTS (ODR) TABLES 28

APPENDIX 3. TRAINING AND CHECKING PLANS FOR MIXED FLEET FLYING (MFF) OPERATIONS ... 29

APPENDIX 4. TYPE RATING CHECKS FOR CCQ/CTR .. 30

APPENDIX 5. AIRCRAFT COMPLIANCE CHECKLIST 33
1. PURPOSE AND APPLICABILITY

1.1 This Flight Standardization Board Report (FSBR) specifies master training, checking, and currency recommendations applicable to crews operating the Airbus A350 aircraft operated under 14 Code of Federal Regulations (CFR) part 121. Provisions of this report apply specifically to the A350 aircraft and:

a) Defines pilot type rating recommendations assigned to the A350,

b) Identifies a common type rating with the A330,

c) Provides information for a related aircraft designation with variations of the A318, A319, A320, A321 (hereafter referred to as A320, unless referred to otherwise), and the A330 aircraft,

d) Describes any unique requirement applicable to initial, transition, upgrade, or recurrent training,

e) Describes Master Difference Requirements (MDR) for crews requiring differences training and qualification for mixed-fleet-flying or transition,

f) Provides examples of Operator Difference Requirements (ODR) tables (available on request from Seattle AEG),

g) Describes training curricula, full flight simulator (FFS), and flight training device (FTD) characteristics when necessary to establish compliance with applicable MDRs,

h) Identifies checking and currency standards to be administered by the Federal Aviation Administration (FAA) or operators,

i) Lists regulatory compliance status (compliance checklist) of the A350 for CFRs, Advisory Circulars, or other operational criteria as information for FAA field offices.

Note: All regulatory references within this report are found in Title 14 of the CFR unless otherwise indicated.

1.2 This report addresses the A350 series aircraft as specified in the FAA Type Certificate Data Sheet No. T00063IB.

1.3 The provisions of this FSBR are effective until amended, superseded, or withdrawn by subsequent revisions to this report.

1.4 FSB Responsibility/Authority: Determinations made in this report are based on the evaluations of specific A350 aircraft models or variations equipped in a given configuration and in accordance with current regulations and guidance. Modifications and upgrades made to the models described herein or introduction of new variations or related aircraft, may require amendment of the findings in this report. The FSB reserves responsibility and authority to re-
evaluate and modify sections of this report based on new or revised Advisory Circular (AC) material, 14 CFR part 121, aircraft operating experience, or the testing of new or modified aircraft under the provisions of Advisor Circular (AC) 120-53, Guidance for Conducting and Use of Flight Standardization Board Evaluations.

1.6 Terminology:

a) The term *must* is used in this FSBR and certain MDR footnotes, even though it is recognized that this report (as well as AC 120-53, on which it is based) provides one means, but not necessarily the only means of compliance with 14 CFR part 121 requirements. This terminology acknowledges the need for operators to fully comply with this FSBR and MDR and ODR provisions if AC 120-53 is to be used by the operator as the means of complying with 14 CFR part 121. Operators who choose this method must comply with each applicable MDR provision, including the footnotes.

b) In accordance with 14 CFR part 121 Related Aircraft has been defined as any two or more aircraft of the same make with either the same or different type certificates that have been demonstrated and determined by the Administrator to have commonality to the extent that credit between those aircraft may be applied for flightcrew member training, checking, recent experience, operating experience, operating cycles, and line operating flight time for consolidation of knowledge and skills.

c) In accordance with 14 CFR part 121 the term Related Aircraft Differences Training has been defined as flightcrew member training required for aircraft with different type certificates that have been designated as related by the Administrator.

d) The term *Cross Crew Qualification* (CCQ) is a manufacturer’s term used in this report to outline the A320 to A350 and A350 to A320 related aircraft differences training curricula as Level E differences have been assigned in the MDR table.

e) The term *Common Type Rating* (CTR) differences training is a manufacturer’s term used in this report to outline the A330 to A350 and A350 to A330 related aircraft differences training curricula as Level D differences have been assigned in the MDR table.

f) The term *Standard Program*, a manufacturer’s term and as applied in this report, refers to the full transition training curriculum for a given aircraft type.

1.7 FSBR Comprehensiveness: This report includes:

a) Minimum requirements for FAA field offices approvals, (e.g. MDR, type rating designations, etc.),

b) General advisory information which may be approved for an operator (e.g. MDR footnotes, ODR tables, etc.), and
g) Information for certificate holders conducting part 121 operations and seeking a designation of related aircraft between the A350 and the A320 or A330. These aircraft have been demonstrated as having commonality.

h) Information for certificate holders seeking deviations from certain 14 CFR part 121 sections as based upon designations of related aircraft. With a designation of related aircraft as well as with information provided in this report, a certificate holder may request a deviation from certain provisions of 14 CFR part 121 relating to operating experience, operating cycles, and consolidation of knowledge and skills, recent experience, and proficiency checks.

e) Information which is used to facilitate FAA review of an aircraft type or related aircraft that is proposed for use by an operator (e.g. a compliance checklist for FAA field office use).

Various sections of this report are qualified as to whether compliance (considering the provisions of AC 120-53) is required or is advisory in nature.

2. PILOT TYPE RATING REQUIREMENTS

2.1 Type Rating: The Airbus A350 type rating designation recommendation is “A-350”. In accordance with the provisions of Federal Aviation Administration (FAA) Order 8900.1, Flight Standards Information Management System (FSIMS), and AC 120-53, the A330 and A350 aircraft are identified as having common type ratings.

3. MASTER DIFFERENCE REQUIREMENTS (MDR)

3.1 Common Requirements (All A350 Aircraft):

3.1.1 Autopilot Engage Altitudes: As referenced by the approved Airplane Flight Manual (AFM), the A350 has specifically been evaluated for autopilot suitability for engagement at or above 100 ft AGL and at least 5 seconds after liftoff during takeoff. For specific operators, authorization for autopilot engagement during takeoff is as designated by individual Operations Specifications.

3.1.2 Aircraft Approach Categories and Circling Minima:

a) The A350 is considered a Category C aircraft for the purposes of determining straight-in landing weather minima. The A350 approach category is determined by the maximum certified landing weight approach speed as defined in 14 CFR part 121.

b) For circling, the aircraft approach category to be used for determining the circling minima is as specified in Operations Specifications for each operator.
3.1.3 Normal Final Landing Flap Setting: The normal final landing flap setting is considered to be either “Conf 3” or “Conf FULL” for all A350 aircraft.

3.2 Master Difference Requirements:

3.2.1 Requirements (MDR) for Particular A320 or A330 and A350 Related Aircraft Combinations: For the purposes of applying the provisions of CCQ or CTR and MFF, an MDR Table for the A320 or A330 and the A350 is shown in Appendix 1. These provisions apply to transition between types and mixed fleet flying when differences between related aircraft exists that affect crew knowledge, skills, or abilities relating to flight safety (e.g., Level A or greater differences). Credit for specific maneuvers is permitted between related aircraft as specified, even though the aircraft may be assigned Level E for differences and have different type ratings. This is appropriate since common handling qualities and other common characteristics, such as cockpit visibility, may permit certain credit for training, checking, and currency related to takeoff and landing.

3.2.2 MDR Footnotes: Footnotes to MDR requirements define required means or alternate means of compliance. A footnote can indicate requirements that are less restrictive than the noted level of difference, or more restrictive than the noted level of difference, depending on the significance of the differences between particular related aircraft.

4. OPERATOR DIFFERENCE REQUIREMENTS (ODR) TABLES

4.1 ODR Tables: ODR tables are used to show an operator compliance methods. Detailed Airbus generic ODR tables are on file with the Seattle Aircraft Evaluation Group (SEA AEG). Copies are available on request. These ODR tables are provided as Airbus generic and, therefore, may not include items that are applicable to particular operators.

4.2 Operator Preparation of ODR Tables: Operators flying a mixed fleet of A350 and other related aircraft must have approved ODR tables pertinent to their fleet.

4.3 ODR Table Coordination: Unless identical or equivalent ODR tables have been previously approved by the FAA, new ODR tables proposed by operators should be coordinated with the FSB prior to FAA approval and implementation. FSB coordination ensures consistent treatment of related A350 aircraft between various operators and compatibility of each ODR table with MDR provisions.

4.4 ODR Table Distribution: Original FAA approved ODR tables are to be retained by the operator. Copies of FAA approved ODR tables are to be retained by the Certificate Holding District Office (CHDO) and should be provided to the A350 FSB Chair at the SEA AEG.

4.5 Credit Permitted by ODR Tables:

4.5.1 Prerequisite: The ODR tables and associated differences credits assume that pilots are qualified, current and experienced in operating the base aircraft, and meet the specific pre-qualification requirements outlined in paragraph 5.1.1.
4.5.2 Training: ODR tables describe differences between one aircraft (base aircraft) and another aircraft (difference aircraft) in summary form and are categorized by differences in design features, systems, and maneuvers. Specific training requirements are listed in Section 5.

4.5.3 Operating Experience (OE): Credit for OE in one type of aircraft may be applied to related aircraft as outlined in Section 5.

4.5.4 Checking: ODR tables specify minimum levels of checking that satisfy differences requirements or type rating requirements. Checking provisions are outlined in Section 6.

4.5.5 Currency: Currency credit is authorized as outlined in Section 7 and as specified by ODR tables.

4.5.6 A320, A330, and A350 MFF: For mixed fleet flying of A320, A330, and A350 aircraft, operators may apply for approval under the provisions of AC 120-53. Operators flying a mixed fleet of related aircraft types must have approved ODR tables consistent with the provisions of this report. A320, A330, and A350 MFF includes crews alternately flying different types between applicable training and checking events. Examples:

a) A320 and A350

b) A330 and A350

5. FSB SPECIFICATIONS FOR TRAINING

5.1 General:

5.1.1 Assumptions Regarding Airmen’s Previous Experience: The provisions of this Section apply to training curricula for airmen who have flight crew experience in both air carrier operations under 14 CFR part 121 and multi-engine transport turbojet aircraft. For airmen not having this experience, additional requirements may be appropriate as determined by the Principal Operations Inspector (POI), FSB, and/or AFS-200.

In addition, the following pre-qualification requirements must be met by all CCQ/CTR Related Aircraft Differences Training participants:

Case 1: Between A320 aircraft and A350 aircraft:
- Completion of the consolidation requirements on the base aircraft in accordance with (IAW) 14 CFR part 121;
- A minimum of 300 hours of line experience on the base aircraft; or
- Specific line experience approved by the POI in coordination with the applicable AEG.

Case 2: Between A330 aircraft and A350 aircraft:
- Qualified and current on base aircraft.
Case 3: Prerequisite for airmen previously qualified, but not current in the base aircraft (A320, A330, or A350 as appropriate):

- Airmen must complete an approved requalification curriculum on the base aircraft before beginning an A320/A350 CCQ or an A330/A350 CTR related aircraft differences curriculum.

5.1.2. Training Curricula New to an Operator: There may be several training curricula for a specific Airbus type and model that are currently FAA approved. If an operator is initially introducing a specific Airbus type and model aircraft into its fleet and there exists other FAA approved training curricula for that same specific type and model and if differences between aircraft are not a factor, then principal inspectors may approve the training curriculum as consistent with the other previously approved curricula. Operators should ensure when related aircraft are added or differences are introduced within a fleet that ODR tables are revised and FAA approved prior to use. In the event of uncertainty regarding evaluation of a proposed curriculum, the FSB should be consulted.

5.1.3 Training curricula with Differences Between Aircraft: Curricula meeting criteria specified by MDR tables must be described in ODR tables and approved by the FAA for:

- CCQ or CTR related aircraft differences curricula between A350 and either related A320 or A330;
- Curricula for more than one related aircraft of A320, A330, or A350; and
- Differences curricula for A350 variations.

5.1.4 No Flap/No Slat or Abnormal Flap or Abnormal Slat Approach: The control laws to be used are the control laws dictated by the particular failure condition simulated (e.g. by a dual hydraulic failure). If the maneuver is conducted in an aircraft, due to system logic, a Flaps 1 approach to a missed approach will be used. If in the aircraft, systems shall not be deactivated to create the failed condition. If the maneuver is conducted in an FFS, the approach shall be continued to a landing.

5.1.5 Training for Seat Dependent Tasks: Accomplishment of certain tasks, procedures, or maneuvers require training of a crewmember for a particular crew position (e.g. pilot in command (PIC), second in command (SIC), check pilot, etc.). Training curricula should recognize and address the necessary seat/position related tasks for the applicable crewmember. Accordingly, training curricula should address seat dependent tasks or maneuvers to the extent necessary to satisfy crew qualification objectives and in accordance with ODR tables, when applicable.

Note: The FSB has not identified any specific seat dependent tasks. For the purpose of this report, identified seat dependent tasks created as the result of additional aircraft modifications or from operator specific requirements have not been evaluated.

5.1.6 Future Air Navigation (FANS)/Required Navigation Performance (RNP)/Communications, Navigation, & Surveillance (CNS)/Controller Pilot Data Link Communications (CPDLC)/Automatic Dependent Surveillance-Broadcast (ADS): Flight crews operating aircraft equipped with FANS software should receive appropriate instruction in its
general operational functions and appropriate uses for areas of operation, routes, and procedures to be flown. General training should address CNS functions covered by FANS, performance based navigation, and RNP. In addition, sufficient training in use of data link communication and ADS to ensure adequate knowledge, skill, and proficiency for flight crews to operate the above system(s) in typical daily operations (requiring their use) should be provided.

5.2 Initial, Upgrade, and Transition Training:

5.2.1 Pilot Initial, Upgrade, and Transition Ground Training: Pilot initial, upgrade, and transition ground training for the A350 is accomplished as specified by 14 CFR part 121. When more than one related aircraft are to be flown or when transition from one related aircraft to another is to be accomplished, appropriate ground instruction in differences is required for each related aircraft consistent with MDR/ODR tables. Training curriculum hours may be reduced as specified in 14 CFR part 121. Proposed reduction in training curriculum hours should ensure that key elements critical to crew knowledge/proficiency are not compromised.

Ground training must include, but is not limited to, the following subjects:

a) Aircraft general description (interior/exterior),

b) Limitations and performance,

c) Powerplant,

d) Aircraft systems (e.g., flight controls, electrical, etc.),

e) Flight management system,

f) Autoflight system (including A/THR), and

g) Normal, supplementary, abnormal and emergency systems operations.

5.2.2 Pilots’ Initial, Upgrade, and Transition Flight Training: Pilots’ initial, upgrade, and transition flight training is accomplished in accordance with 14 CFR part 121. When initial, upgrade, or transition flight training is accomplished and several related aircraft are to be flown, flight training should suitably address each related aircraft. Training curriculum hours may be reduced as specified in 14 CFR part 121, but not in a manner or in areas which invalidate compliance with provisions of the MDR or ODR tables.

Flight training must include the following events or maneuvers:

a) Preflight inspection (interior/exterior) (may be provided by approved audio/visual presentation),

b) Taxi,

c) Normal takeoff/landing,
d) Area departure (SID, radar vectors, MFD use, and FMS functions understanding),

e) Airwork (stall prevention/recovery and steep turns),

f) Normal, abnormal and emergency procedures,

g) Area arrival/holding (STAR, radar vectors, MFD use, and FMS functions understanding),

h) Instrument approaches,

i) Missed approaches,

j) Sidestick utilization/authority,

k) Autoflight system (including A/THR), and

l) Electronic Flight Control System protections.

5.2.3 Crewmember Emergency Training: Crewmember emergency training should be conducted for the A350 aircraft in accordance with 14 CFR part 121. The objective of emergency training is to provide crewmembers with the necessary knowledge concerning emergency equipment, situations, and procedures, to ensure implementation of the correct actions in the event of an emergency.

Emergency training consists of instruction on the location, function, and operation of emergency equipment that is different in each related aircraft of the A320, A330, and A350 and from other A350 variations in the operator's fleet. Where emergency equipment is common, instruction may be adjusted for crewmembers qualified and current on this equipment, provided records are available which demonstrate that crewmembers meet 14 CFR part 121 requirements. For example, if the fire extinguishers are common to fire extinguishers on other aircraft in the operator's fleet, training may be simultaneously credited for both aircraft. Conversely, for equipment that is unique to an A350 base aircraft, training on the emergency equipment for each variation or related aircraft is required.

Emergency training also consists of instruction in crewmember emergency assignments and procedures including crew coordination and communication, the handling of emergency or other unusual situations, and emergency performance and observation drills that are specific to each A350 variation or related aircraft of the A320, A330, and A350.

In accordance with 14 CFR part 121 and Order 8900.1, emergency training requirements refer to two types of training: general emergency training and aircraft-specific emergency training. General emergency training is instruction on those emergency items that are common to the A320, A330, A350, and all A350 variations in the operator's fleet, e.g. instruction on fire extinguishers and firefighting procedures, if common to all aircraft. Aircraft-specific emergency training is training on those items that are specific to each A350 variation or related aircraft. An
example of aircraft-specific emergency training is instruction on the location of emergency equipment.

As part of an approved training curriculum, an operator may use many methods when conducting aircraft-specific emergency training, including classroom instruction, pictures, video, FSTDs, computer-based instruction, and static aircraft training.

There are no specified training curriculum hours for Crewmember Emergency Training. A chart addressed in 8900.1 provides National Norms for the approval of the general emergency training curriculum hours. The complexity of the A350 aircraft and the complexity of the type of operation to be conducted should be considered when approving the A350 aircraft-specific emergency training.

5.2.4 Training Areas of Special Emphasis: Advanced features within the electronic flight control system and its associated sidestick controller along with the A/THR system warrant special emphasis. These features have an impact on current industry pilot qualification practices, as well as policies related to Flight Operations Evaluation Board (FOEB) requirements for developing and using Master Minimum Equipment Lists (MMELs) for these aircraft. For these reasons, training areas of special emphasis are recommended for the A350. Such training should be conducted to improve basic crewmember understanding and confidence regarding aircraft handling qualities, options, and procedures as these relate to design characteristics and limitations. Examples of this training include the following:

 a) Knowledge and demonstration of the flight characteristics and the degree of flight envelope protection provided by the various flight control laws for both pitch and roll control, and the normal events which result in changes in the various modes within these laws for the various phases of flight,

 b) Knowledge and demonstration of the use of the sidestick controller, and the relationship between the two sidestick controllers, and transfer of controls,

 c) Knowledge and demonstration of the automatic thrust control system including thrust lever position, use of speed trend information and the Flight Mode Annunciator (FMA)/Flight Control Unit (FCU) annunciations related to the various modes of normal/abnormal operation,

 d) Knowledge and demonstration of mode awareness and mode transitions (e.g., FMA, FCU, configuration), regardless of whether initiated by the flight crew or by a system response to design logic,

 e) Knowledge of the normal, alternate, and emergency braking systems and the means to transition from one system to the other, and

 f) Knowledge and demonstration of prevention and recovery from a low energy state and impending stall.
5.2.5 Controlled Flight Into Terrain (CFIT): Due to continued industry and FAA efforts to reduce exposure to CFIT accidents, special emphasis on this topic is appropriate.

5.2.6 Automatic Landings: If an operator conducts automatic landings in the A350, then appropriate training must occur. This training must be conducted either in an A350 FFS approved for autoland training or in the actual airplane.

5.2.7 Training Footprint: Airbus training footprints for A350 are available on request to the SEA AEG. These footprints have been developed by the manufacturer and therefore, may not include items that are applicable to particular operators.

5.2.8 Flight Crew Rest Compartment (FCRC) and Cabin Crew Rest Compartment (CCRC)

5.2.8.1 Occupancy: Only designated crewmembers trained in FCRC/CCRC procedures may occupy the A350 overhead FCRC/CCRC.

5.2.8.2 Guidance for Operational Approval:

5.2.8.2.1 The A350 overhead FCRC should be evaluated and determined to meet requirements of 14 CFR part 121, Advisory Circular (AC) 117-1, Flightcrew Member Rest Facilities, and Order 8900.1. Specific operational approval for an operator to use the FCRC is required.

5.2.8.2.2 Rescue and Emergency Evacuation: Operators should have written procedures regarding rescue and evacuation pertaining to occupants of the FCRC/CCRC. If an FCRC/CCRC is approved for use during taxi, takeoff, or landing (TTL), as a minimum, the following is recommended:

a) If an in-flight emergency occurs where an evacuation is possible and the situation permits, the crew must inform the appropriate Air Traffic Services Unit that there is an occupied FCRC/CCRC on board. This information should include the number of occupants and the locations of the FCRC/CCRC on the aircraft,

b) At least one cabin crew member is given responsibility to ensure occupants of each FCRC/CCRC are evacuated if an evacuation command is given, and

c) For planned evacuations, FCRC/CCRC occupants should be relocated to the main deck prior to landing if seats are available and time permits.

5.2.8.2.3 Procedures and Training - All Crewmembers: As a minimum, prior to occupying an FCRC, crewmembers must be familiarized with the conditions for occupancy and the safety provisions and equipment of the facility, to include the following:

a) Maximum allowable occupancy for TTL and in-flight,

b) Location and use of fire extinguishers and smoke hoods (firefighting procedures),

c) Emergency oxygen (decompression procedures),

Page 15 of 33
d) Primary and secondary escape routes (evacuation procedures),

e) Reminder that flight attendants will provide further direction after reviewing the outside conditions,

f) Communication system,

g) Occupant use of seat and ancillary equipment, seat belts, and bunk restraints, and

h) Restrictions (when appropriate) on bunk use during TTL.

5.2.8.2.4 Procedures and Training - Flight Attendants: FCRC/CCRC familiarization must also be included in flight attendant training to include items listed in 5.2.8.2.3. Additional procedures and responsibilities to be developed and included in flight attendant training are:

a) Disposition of the FCRC/CCRC door during taxi, takeoff, after takeoff, prior to landing, and after landing,

b) Ensuring each FCRC/CCRC, if occupied, is evacuated during an airplane evacuation,

c) Activities and procedures that minimize rest disruptions, and

d) Prevention of unauthorized entry to the FCRC/CCRC.

5.3 Differences Training (CTR, CCQ, Variation):

5.3.1 General: Differences training is required for related aircraft, as provided in 14 CFR part 121. Recommendations for required training is addressed in this report per MDR and ODR tables. Detailed Airbus generic ODR tables may be obtained through the SEA AEG. Copies are available upon request. These ODR tables are provided as Airbus generic and therefore, may not include items that are applicable to particular operators.

a) A differences training curriculum recognizes that a trainee has completed initial, upgrade, or transition training in a base aircraft and will receive differences training for any variation or related aircraft.

b) When a differences training curriculum involves variation aircraft having the same type certificate, coverage of differences may be completed either coincident with each phase of an initial, upgrade, or transition training curriculum, or following completion of that training curriculum. The differences training must be consistent with the provisions of the approved applicable MDR/ODR Tables.

c) When a related aircraft differences training curriculum involves related aircraft that have been identified as having different type ratings, coverage of differences must be completed in accordance with the prerequisites defined in 5.1.1, and applicable MDR/ODR provisions.
5.3.2 Differences Ground Training: Differences ground training is required on the topics applicable to the pertinent variation or related aircraft and is shown by applicable ODR tables.

5.3.3 Differences Flight Training: Difference flight training is required in the topics and maneuvers applicable to the pertinent variation or related aircraft that is shown by applicable ODR tables.

5.3.4 Fleets with Different Engine Types: Mixed-flying of A350 fleets with different engine types require additional training as shown by applicable MDR/ODR tables.

5.4 Recurrent Training:

5.4.1 Recurrent Ground Training: Training curricula must include appropriate training in accordance with 14 CFR part 121 for each A350 variation or related A320, A330, and A350 aircraft type as specified by MDR and ODR tables for differences training.

5.4.2 Recurrent Flight Training: Training curricula require appropriate maneuvers and procedures identified in 14 CFR part 121 or as otherwise described in this report. Maneuvers and procedures must account for differences between A350 variations and each related aircraft operated. The ODR table(s) must identify the differences.

5.4.3 Recurrent Training Consideration for Mixed Fleet Flying Operations: When different type ratings are identified, an alternate plan for recurrent training and checking may be developed. (Refer to Appendix 3.)

5.4.4 Recurrent Training Hours Modification: Training curriculum hours for recurrent training may be reduced as specified in 14 CFR part 121.

5.5 Operating Experience:

5.5.1 Operating Experience Pertinent to Each Flight Crewmember: Operating experience must be obtained while serving in a primary crew position.

5.5.2 Separate Operating Experience for Single Fleet Operations: Operating experience for the A350 may be accomplished in any variation of A350 aircraft.

5.5.3 Operating experience for Mixed Fleet Flying Operations: Separate operating experience applies to the A350 and other related aircraft (e.g. A320, A330, etc.). Credit between aircraft may be granted under mixed fleet flying in accordance with 14 CFR part 121.

Note: Provisions of this paragraph do not preclude additional and separate requirements which otherwise may be necessary, such as compliance with 14 CFR part 121 regarding operations in special areas or into special airports.

5.6 Other Training:
5.6.1 LOFT Curricula: When operators have LOFT curricula and several A350 variations or related aircraft, POIs should review LOFT credits to assure suitability for each aircraft. If an FFS used for LOFT have differences from the aircraft variation or related aircraft actually flown, LOFT credits may be reduced or eliminated if such differences are determined to have a significant adverse impact on the effectiveness of LOFT.

5.6.2 Instrument Approaches: When crews simultaneously qualify for use of CAT II and/or CAT III approaches, credit, as permitted by ODR tables, may apply.

Note: Operators should assure that crews are familiar with appropriate use of the FCU and Flight Management System (FMS), including modes to be used, for the types of instrument approaches to be flown. This is particularly important when using RNAV and FLS methods in lieu of or in conjunction with NDB, VOR, localizer, or back course localizer procedures. This emphasis is also appropriate for aircraft that do not have certain navigation system sensors (e.g. no ADF installed).

5.6.3 Flight Attendants: Initial and transition ground training should be conducted in accordance with 14 CFR part 121. The objective of aircraft ground training is to provide flight attendants with an understanding of the A350 variations and related aircraft, as appropriate. This knowledge is necessary for the flight attendant to perform the duties and procedures required in normal, abnormal, and emergency situations.

5.6.3.1 Because of similarities in cabin configuration, flight attendants may be concurrently qualified in any combination of A350 variations and A320, A330, and A350 related aircraft. Such qualification, however, must address all differences in doors, slides, communications, and emergency equipment/procedures, when common qualification applies.

5.6.3.2 Aircraft ground training includes instruction in two distinct subject areas: A320, A330, and A350, as appropriate, general operational subjects training and A320, A330, and A350, as appropriate, aircraft-specific emergency subjects training.

5.6.3.3 A350 general operational subjects training consists of instruction in the general description of the aircraft, aircraft equipment, furnishings and systems, routine crewmember communication and coordination procedures, routine crewmember duties and procedures during each phase of flight, and passenger handling responsibilities for A350 aircraft.

5.6.3.4 As part of an approved training curriculum, an operator may use many methods when conducting aircraft ground training, including classroom instruction, pictures, videotape, FSTDs, computer-based instruction, and static aircraft training.

5.6.3.5 Initial and Transition Ground Training must include a competence check to determine flight attendant ability to perform assigned duties and procedures on the A350 aircraft. The competence check should cover each piece of emergency equipment and each emergency procedure unique to the A350 aircraft.

5.6.3.6 Training curriculum hours for initial ground training may be reduced as specified in 14 CFR part 121. There are no specified training curriculum hours for transition ground training.
Specific design features of the A350 aircraft, combined with the various types of operations to be conducted, should be considered when approving A350 transition ground training.

6. FSB SPECIFICATIONS FOR CHECKING

6.1 General: Checks or evaluations are specified by 14 CFR part 121, Order 8900.1, FAA-S-8081-5F, Airline Transport Pilot and Aircraft Type Rating Practical Test Standards for Airplane (PTS), and in conjunction with procedural proficiency, planning, crew coordination, crew interaction, and aircraft handling skills. Evaluations apply separately to the A350 variations and other related aircraft unless otherwise permitted by MDRs and ODRs (e.g. from A320 or A330 to A350). Checks must be conducted in an approved FTD, FFS, or in the aircraft and must include a demonstration of competency covering an oral or written exam and a demonstration of flying and procedural proficiency, as applicable. Checking is not to be completed in lieu of training.

6.1.1 Stall Prevention and Steep Turn: The training and checking of stall prevention may only be accomplished by disabling or overriding certain protections that have been incorporated into the design of the aircraft.
- For the stall prevention/recovery maneuver, flight control laws should be degraded. This may be accomplished by disabling various aircraft systems.
- For the steep turn maneuver, the roll rate demand law for bank angles between 33° and 67° are overridden with use of the sidestick controller in order to achieve and maintain a bank angle of 45°.

6.1.2 No Flap/No Slat or Abnormal Flap or Abnormal Slat Approach: The control laws to be used are the control laws dictated by the particular failure condition simulated (e.g. by a dual hydraulic failure). If the maneuver is conducted in an aircraft, due to system logic, a Flaps 1 approach to a missed approach will be used. If in the aircraft, systems shall not be deactivated to create the failed condition. If the maneuver is conducted in an FFS, the approach shall be continued to a landing.

6.2 Type Ratings:

6.2.1 Type Rating Following Standard Program:

a) Oral and/or Written tests: Unless otherwise specified by ODR tables, an oral or written portion of a type rating practical test need only address the A350 aircraft to be flown or to be used for the conduct of the flight test. If information applicable to other A350 variations is a factor in conducting an oral or written test, the applicant should be advised as to which A350 variation the test will include.

b) Practical tests: This is not an all-inclusive list of items requiring evaluation. The purpose of this list is to supplement the basic requirements and provide additional guidance where appropriate. Practical tests may follow standard provisions of 14 CFR part 121.
1) Area Departure and Arrival Using the Appropriate Level of Automation for a Given Situation:
 - Using normal features of the Flight Management System (FMS).
 - Using autothrust.
 - Using flight director.
 - Using autopilot.

2) Approaches:
 - Other than ILS or GLS: At the discretion of the inspector/examiner, one non precision approach using either FLS function or lateral managed mode with selected vertical mode may be requested.
 - Normal ILS/GLS (All Engine Flight Director or Coupled Approach): At the discretion of the inspector/examiner, a demonstration of ILS/GLS approaches may be requested with use of the Flight Path Vector (FPV) (if authorized).
 - One-Engine Inoperative CAT I ILS/GLS Approach to DA(H): To be flown using normal control law.
 - Slat/Flap Approach: Demonstration of abnormal slats/flaps approaches, including a no slat/flap approach.

3) Landings:
 - Autoland (if authorized).

6.2.2 Type Rating Checks Following Differences Training: Under the differences training concept (CCQ, CTR, Variation) and IAW the provisions of 14 CFR part 121 and AC 120-53, type rating checks need only test the differences as identified in the ODR tables, provided the airman is current in the base aircraft. Oral and/or written exams should, at a minimum, ensure comprehensive knowledge of differences described in the ODR tables. With a differences curriculum, the practical test need only encompass the applicable difference level as identified in approved ODR tables.

6.2.2.1 If qualified on the A320 or A330, the A350 practical test should be a differences check as defined in AC 120-53 with the purpose of addressing those differences between the two aircraft. The differences check may be a partial proficiency check which does not fully satisfy the recency requirements of a full proficiency check as required in 14 CFR part 121. The elements of the differences check are designed to evaluate the differences between the A320 or A330 and A350. Operators choosing to reset the recency requirements for proficiency checks must administer a full proficiency check in lieu of the partial proficiency check.

6.2.3 Application For and Issuance of Type Ratings: Airmen completing 14 CFR part 121 requirements in an A350 with FSB recommendations described in this report may apply to the FAA for the appropriate A350 type rating endorsement. The A330 and A350 have been identified as having common type ratings. However, recommendations described in this report should be complied with before the A350 type rating endorsement is issued. Upon completion of requirements and submission of an application (FAA Form 8710-1, Airman Certificate and/or Rating Application), authorized FAA inspectors or designees may issue the necessary pilot certificate with the A350 type rating endorsement.
6.3 Proficiency Checks:

6.3.1 General: Proficiency checks are administered as required in 14 CFR part 121. When a recurrent proficiency check addresses qualification in an A350 and A320 or A330 related aircraft, the check may address the related aircraft. However, as approved in the ODR tables, portions of the check should be accomplished in relevant combinations of an FTD, FFS, or aircraft to ensure assessment of competency related to other related aircraft flown.

6.3.2 Alternating Proficiency Checks in Mixed Fleet Flying Operations: For MFF between A320 or A330 and A350 related aircraft, proficiency checks should alternate for PICs and other flight crew members, as outlined in Appendix 3.

Note: Satisfactory completion of a proficiency check may be substituted for recurrent flight training as permitted in 14 CFR part 121 for any A350 aircraft.

6.4 Line Checks:

6.4.1 MFF Operations: Line checks completed for either A320, A330, or A350 aircraft may satisfy the requirement for the other related aircraft type(s).

7. FSB SPECIFICATIONS FOR CURRENCY AND RECENT EXPERIENCE

7.1 Currency for Mixed Fleet Flying Operations: These are shown in MDR/ODR tables:

7.1.1 Methods for Re-establishing Currency:

a) Re-establishing Mixed Fleet Flying currency at level A, B, or C: If necessary, currency is re-established at difference level A, B or C, as provided in AC 120-53.

b) Re-establishing Mixed Fleet Flying Currency at Level D or E: Flight crewmembers re-establishing currency at level D or E is as specified in 14 CFR part 121 or as specified by ODR tables and IAW AC 120-53. During line operations, currency may be re-established under the supervision of an appropriately qualified check pilot serving as PIC. Currency may also be re-established by a simulator proficiency check or by completing an approved recurrent training course. Recent experience requirements must be re-established IAW 14 CFR part 121.

c) Re-establishing Single Fleet Currency: Flight crewmembers re-establishing currency is as specified in 14 CFR part 121. During line operations, currency may be re-established under the supervision of an appropriately qualified check pilot serving as PIC. Currency may also be re-established by a simulator proficiency check or by completing an approved recurrent training course. Recent experience requirements must be re-established IAW 14 CFR part 121.
7.2 Recent Experience Required by 14 CFR part 121: Recent experience is common to the A320 or A330 and the A350. Segment currency may be maintained in the A320 or A330 and the A350 by accomplishing segment currency in each aircraft.

7.2.1 Takeoff and Landing Credit Permitted for Mixed Fleet Flying Operations: Specific credits are permitted for those takeoffs and landings performed in the A320 or A330 and the A350. Takeoffs and landings performed in any A350 variation are equivalent to those performed in the related A330 aircraft and vice versa. This is appropriate because of similar handling characteristics.
MIXED FLEET AIRCRAFT TYPES

<table>
<thead>
<tr>
<th>A320 AND A350</th>
<th>RECENT EXPERIENCE REQUIREMENTS (90 DAYS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 3 TAKEOFFS TOTAL AS PILOT FLYING:</td>
<td></td>
</tr>
<tr>
<td>- IN EITHER A320 OR A350, OR</td>
<td></td>
</tr>
<tr>
<td>- COMBINATION OF A320 AND A350.</td>
<td></td>
</tr>
<tr>
<td>- 3 LANDINGS TOTAL AS PILOT FLYING:</td>
<td></td>
</tr>
<tr>
<td>- 1 MANUALLY FLOWN IN A320,</td>
<td></td>
</tr>
<tr>
<td>- 1 MANUALLY FLOWN IN A350, AND</td>
<td></td>
</tr>
<tr>
<td>- 1 OF EITHER TYPE (MANUALLY FLOWN OR AUTOPILOT) IN EITHER A320 OR A350.</td>
<td></td>
</tr>
<tr>
<td>- 1 SEGMENT IN BOTH A320 AND A350. *</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A330 AND A350</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- 3 TAKEOFFS AS PILOT FLYING IN EITHER A330 OR A350.</td>
<td></td>
</tr>
<tr>
<td>- 3 LANDINGS AS PILOT FLYING IN EITHER A330 OR A350, 1 OF WHICH IS MANUALLY FLOWN.</td>
<td></td>
</tr>
<tr>
<td>- 1 SEGMENT IN BOTH A330 AND A350. *</td>
<td></td>
</tr>
</tbody>
</table>

* For the purposes of this report, a segment consists of completion of all procedural phases of a flight from beginning to end. A pilot performing the duties of either required flight crewmember position may count the performance of those duties toward the completion of a segment. A segment may be completed in one flight, or by cumulatively completing the necessary phases in more than one flight. A segment may also be completed in an approved FFS or FTD, level 5 or higher, using a line flight scenario where all segment procedural phases are completed. For recent experience requirements, an FTD may only provide for segment currency and not for takeoff and landing currency. Recent experience requirements for takeoffs and landings, as shown in the table above, may only be accomplished in the appropriate aircraft or FFS.

8. AIRCRAFT REGULATORY COMPLIANCE CHECKLIST

8.1 General: Compliance checklists are provided as an aid to FAA Certificate Holding District Offices (CHDO) in identifying those specific rules or policies for which compliance has already been demonstrated to FAA for a particular type certificated aircraft and its variations and related aircraft. The checklist also notes rules or policies not demonstrated to the FSB, which must be demonstrated to CHDOs by operators.

8.2 A350 Compliance Checklist: An aircraft compliance checklist for the A350 will be provided after an A350 of United States registry has become available.
8.3 Discussion of Specific Compliance Items

8.3.1 Observer Seats: The seat referred to as the "third occupant seat" (center observer seat) is considered to have met 14 CFR part 121 requirements. The seat referred to as the "fourth occupant seat" (left observer seat) may be used by FAA inspectors at their discretion. Neither observer seat is designed nor intended for use as a crew rest station.

8.3.2 Emergency Evacuation: A demonstration of emergency evacuation procedures in accordance with 14 CFR part 121 was successfully completed by analysis for the A350.

<table>
<thead>
<tr>
<th>Door Types and Approved Configurations</th>
<th>Maximum Passenger Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-A-A-A</td>
<td>385</td>
</tr>
<tr>
<td>C-A-C-A</td>
<td>330</td>
</tr>
</tbody>
</table>

Accordingly, an actual full scale evacuation demonstration as may be required by 14 CFR part 121 for individual operators may not be required unless a passenger capacity greater than the certificated capacity is requested. However, a partial demonstration evacuation, should be accomplished by each new A350 operator in accordance with 14 CFR part 121.

8.3.3 Ditching Demonstration: A full scale ditching demonstration in accordance with 14 CFR part 121 and Order 8900.1 has not been completed.

8.3.4 Proving Runs: Initial proving runs in accordance with provisions of 14 CFR part 121 have not been completed.

9. FSB SPECIFICATION FOR DEVICES AND SIMULATORS

9.1 Device and Simulator Characteristics: FTD and FFS characteristics are as specified by 14 CFR part 121 except as described below.

9.2 Special Requirements: Special FTD or FFS characteristics are described for training, checking, and re-establishing currency.

9.2.1 When different engine display formats are used due to operation with different engine types and in addition to simulator or FTD training for an appropriate variation or related aircraft, crews should be exposed to the alternate engine instrument presentations by some means (e.g., computer based training, simulator, photos, drawings, etc.) adequate to assure proper display interpretation and use.

9.2.2 Use of FTDs for Specific Check/Evaluation Items: Certain airline transport pilot course, type rating, or proficiency check/evaluation items may be completed in FAA qualified FTDs. This is appropriate for items such as FMS initialization or engine start non-normals. Specific checking credit in such instances must be approved by the POI.
9.3 FFS and FTD Compatibility: When a mix of A350 variations and related aircraft are operated, the combinations of an FTD and FFS should adequately address the training requirements. Differences between training devices and airplanes should be clearly identified with associated training solutions.

9.4 Device Approval: Requests for device approval should be made to the POI. The POI may approve these devices for that operator if their characteristics clearly meet the established FAA criteria and have been qualified by the National Simulator Program (NSP).

9.5 Doors Trainers: Training in accordance with 14 CFR part 121 must be conducted on an aircraft or with an approved door training device representative of the operator’s fleet configuration.

10. APPLICATION OF FSB REPORT

10.1 Operators with only one aircraft variation and no other Related Aircraft (no differences): Apply relevant parts of this report (e.g., type rating designation, checking maneuvers related to 14 CFR part 121, etc.) following the effective date of this report.

10.2 Operators with a Mixed Fleet: In addition to the provisions outlined in paragraphs 11.1 and 4.5.6, compliance with MDRs, ODRs, and other relevant FSB report provisions is necessary. Additional guidance may also be found in AC 120-53.

11. ALTERNATE MEANS OF COMPLIANCE

11.1 Approval Level and Approval Criteria: Alternate means of compliance to differences requirements of 14 CFR part 121 for mixed fleet operations other than as specified in the provisions of this report, are approved by the POI with FAA Air Transportation Division (AFS-200) concurrence. If alternate means of compliance is sought, operators should establish that the proposed alternate means provides an equivalent level of safety to the provisions of AC 120-53 and this FSB report. Analysis, demonstrations, proof of concept testing, differences documentation, or other evidence may be required.

11.2 Equivalent Safety: In the event alternate compliance is sought, training curriculum hour reductions, simulator approvals, and device approvals may be significantly limited and reporting requirements may be increased to assure equivalent safety. AFS-200 will generally not consider relief by alternate means of compliance unless sufficient lead time has been planned by an operator to allow for any necessary testing and evaluations.

11.3 Interim Training Curricula: In the event unforeseen circumstances make it impossible for an operator to comply with MDR provisions, the operator may seek interim curriculum approval rather than a permanent alternate compliance method. Financial arrangements, scheduling adjustments, and similar justifications are not considered "unforeseen circumstances" for the purposes of this provision.
12. MISCELLANEOUS - RESERVED
APPENDIX 1

MASTER DIFFERENCE REQUIREMENTS (MDR) TABLE

<table>
<thead>
<tr>
<th>A350 and Related Aircraft</th>
<th>FROM AIRPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A320</td>
</tr>
<tr>
<td>TO AIRPLANE</td>
<td></td>
</tr>
<tr>
<td>A320</td>
<td></td>
</tr>
<tr>
<td>A330</td>
<td></td>
</tr>
<tr>
<td>A350</td>
<td>E/E/D</td>
</tr>
</tbody>
</table>

A350 Variations Table

<table>
<thead>
<tr>
<th>A350 Variations</th>
<th>FROM AIRPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A350-900</td>
</tr>
<tr>
<td>TO AIRPLANE</td>
<td></td>
</tr>
<tr>
<td>A350-900</td>
<td>/</td>
</tr>
<tr>
<td>A350-1000</td>
<td>TBD</td>
</tr>
</tbody>
</table>
APPENDIX 2

OPERATOR DIFFERENCE REQUIREMENTS (ODR) TABLES

(Available on request from the Seattle AEG.)

(AC 120-53 provides an example of an ODR Table format.)
APPENDIX 3

PIC TRAINING AND CHECKING PLANS FOR MIXED FLEET FLYING OPERATIONS

Alternating Proficiency Training (PT) and Proficiency Check (PC) Plan Under Mixed Fleet Flying Operations After CCQ/CTR Course

(A320 and A350, A330 and A350)

Examples of Alternating PT/PC Plan for 2 Related Aircraft Types

A320 and A350 (Separate Type Ratings)

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>PT</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 mths</td>
<td>A320</td>
<td>A350</td>
</tr>
<tr>
<td>2</td>
<td>6 mths</td>
<td>A350</td>
<td>A320</td>
</tr>
<tr>
<td>3</td>
<td>6 mths</td>
<td>A320</td>
<td>A350</td>
</tr>
<tr>
<td>4</td>
<td>6 mths</td>
<td>A320</td>
<td>A350</td>
</tr>
</tbody>
</table>

A330 and A350 (Common Type Ratings)

<table>
<thead>
<tr>
<th>Year</th>
<th>Period</th>
<th>A350 Checking</th>
<th>A350 Training</th>
<th>A330 Checking</th>
<th>A330 Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 mths</td>
<td>PC</td>
<td>PT</td>
<td>PC</td>
<td>PT</td>
</tr>
<tr>
<td>2</td>
<td>6 mths</td>
<td>PC</td>
<td>LOFT</td>
<td>PC</td>
<td>LOFT</td>
</tr>
<tr>
<td>3</td>
<td>6 mths</td>
<td>PC</td>
<td>PT</td>
<td>PC</td>
<td>PT</td>
</tr>
<tr>
<td>4</td>
<td>6 mths</td>
<td>PC</td>
<td>LOFT</td>
<td>PC</td>
<td>PT</td>
</tr>
</tbody>
</table>

Note: Difference training for variations of aircraft within a type are to be addressed during recurrent training.
APPENDIX 4

TYPE RATING CHECKS FOR CCQ/CTR

CCQ TYPE RATING TEST
Example Partial Proficiency Check for A320 to A350

EVALUATION SUMMARY
The evaluation flight profile includes those procedures and representative maneuvers that will be evaluated in a full flight simulator with emphasis on the differences between the A320 and the A350. The sequence of events and the abnormal and emergency procedures used may be modified at the discretion of the evaluator.

ORAL and/or WRITTEN TEST

• IAW 14 CFR part 121 and PTS, as appropriate

PRACTICAL TEST (FFS)

• GROUND OPERATIONS
 [] Preflight and Flight Planning
 [] Engine Start and After Start
 [] Taxi
• TAKEOFFS
 [] Instrument
 [] Electronic Checklists
 [] Automation: BRK RTO on FMA
 [] Rejected Takeoff
 [] Engine Failure after V1
• INSTRUMENT PROCEDURES
 [] Area Departure, Climb, Cruise, & Descent
 [] Normal ILS Approach
 [] Engine-out ILS Approach
 [] Engine-out Missed Approach
 [] Nonprecision FLS Approach
 [] Autoland
• INFLIGHT MANEUVERS
 [] None Required
• LANDINGS
 [] Normal landing
 [] Landing with 1 engine inoperative
• NORMAL, ABNORMAL, AND EMERGENCY PROCEDURES
 [] As appropriate per Approved ODR
• SYSTEMS
 [] Communication Controls and Indicating
 [] Keyboard and Cursor Control Units (KCCU)
 [] Multi-Function Display (MFD)
 [] Brake to Vacate Design (BTV)
 [] Braking Indicating
 [] Navigation Controls and Indicating
 [] Onboard Information System (OIS)
 [] Radar
 [] AP/FD TCAS
 [] Flight Director TRK/FPA
CTR TYPE RATING TEST

Example Partial Proficiency Check for A330 to A350

EVALUATION SUMMARY
The evaluation flight profile includes those procedures and representative maneuvers that will be evaluated in a full flight simulator or level 6 or greater flight training device with emphasis on the differences between the A330 and the A350. The sequence of events and the abnormal and emergency procedures used may be modified at the discretion of the evaluator.

ORAL and/or WRITTEN TEST

- IAW 14 CFR part 121 and PTS, as appropriate

PRACTICAL TEST (MINIMUM LEVEL 6 FTD)

- GROUND OPERATIONS
 - Preflight and Flight Planning
 - Engine Start and After Start
- TAKEOFF
 - Electronic Checklists
 - Automation: BRK RTO on FMA
- INSTRUMENT PROCEDURES
 - Area Departure, Climb, Cruise, & Descent
 - Normal ILS Approach
 - Nonprecision FLS Approach
 - Nonprecision FLS Approach
 - None Required
- NORMAL, ABNORMAL, AND EMERGENCY PROCEDURES
 - As appropriate per Approved ODR
- SYSTEMS
 - Communication Controls and Indicating
 - Keyboard and Cursor Control Units (KCCU)
 - Multi-Function Display (MFD)
 - Brake to Vacate Design (BTV)
 - Braking Indicating
 - Navigation Controls and Indicating
 - Onboard Information System (OIS)
 - Radar
 - AP/FD TCAS
 - Flight Director TRK/FPA
APPENDIX 5

AIRCRAFT COMPLIANCE CHECKLIST

(RESERVED)